CondorOrdinalEncoder
CondorOrdinalEncoder(nclasses=0, dtype=
Base class for all estimators in scikit-learn.
Notes
All estimators should specify all the parameters that can be set
at the class level in their __init__ as explicit keyword
arguments (no *args or **kwargs).
Methods
fit(X, y=None)
Fit the CondorOrdinalEncoder to X.
Parameters
-
X: array-like of shape (n_samples, n_features)The data to determine the categories of each feature.
-
y: NoneIgnored. This parameter exists only for compatibility with :class:
~sklearn.pipeline.Pipeline.
Returns
self
fit_transform(X, y=None, fit_params)
Fit to data, then transform it.
Fits transformer to `X` and `y` with optional parameters `fit_params`
and returns a transformed version of `X`.
Parameters
-
X: array-like of shape (n_samples, n_features)Input samples.
-
y: array-like of shape (n_samples,) or (n_samples, n_outputs), default=NoneTarget values (None for unsupervised transformations).
-
**fit_params: dictAdditional fit parameters.
Returns
-
X_new: ndarray array of shape (n_samples, n_features_new)Transformed array.
get_params(deep=True)
Get parameters for this estimator.
Parameters
-
deep: bool, default=TrueIf True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns
-
params: dictParameter names mapped to their values.
set_params(params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as :class:`~sklearn.pipeline.Pipeline`). The latter have
parameters of the form ``<component>__<parameter>`` so that it's
possible to update each component of a nested object.
Parameters
-
**params: dictEstimator parameters.
Returns
-
self: estimator instanceEstimator instance.
transform(X)
Transform X to ordinal arrays.
Parameters
-
X: array-like of shape (n_samples, 1)The labels data to encode.
Returns
-
X_out: ndarray of shape (n_samples, n_classes-1)Transformed input.