condor_pytorch version: 1.0.0
ordinal_softmax
ordinal_softmax(x, device='cpu')
Convert the ordinal logit output to label probabilities.
Parameters
x: torch.Tensor, shape=(num_samples,num_classes-1) Logit output of the final Dense(num_classes-1) layer.
device: 'cpu', 'cuda', or None (default='cpu')
If GPUs are utilized, then the device should be passed accordingly.
Returns
probs_tensor: torch.Tensor, shape=(num_samples, num_classes) Probabilities of each class (columns) for each sample (rows).
Examples
>>> ordinal_softmax(torch.tensor([[-1.,1],[-2,2]]))
tensor([[0.7311, 0.0723, 0.1966],
[0.8808, 0.0142, 0.1050]])